Ολοκλήρωμα του $$$\frac{\cos^{2}{\left(x \right)}}{3} - 1$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{\cos^{2}{\left(x \right)}}{3} - 1$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(\frac{\cos^{2}{\left(x \right)}}{3} - 1\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(\frac{\cos^{2}{\left(x \right)}}{3} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} + \int{\frac{\cos^{2}{\left(x \right)}}{3} d x}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=1$$$:

$$\int{\frac{\cos^{2}{\left(x \right)}}{3} d x} - {\color{red}{\int{1 d x}}} = \int{\frac{\cos^{2}{\left(x \right)}}{3} d x} - {\color{red}{x}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{3}$$$ και $$$f{\left(x \right)} = \cos^{2}{\left(x \right)}$$$:

$$- x + {\color{red}{\int{\frac{\cos^{2}{\left(x \right)}}{3} d x}}} = - x + {\color{red}{\left(\frac{\int{\cos^{2}{\left(x \right)} d x}}{3}\right)}}$$

Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ με $$$\alpha=x$$$:

$$- x + \frac{{\color{red}{\int{\cos^{2}{\left(x \right)} d x}}}}{3} = - x + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{3}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(x \right)} = \cos{\left(2 x \right)} + 1$$$:

$$- x + \frac{{\color{red}{\int{\left(\frac{\cos{\left(2 x \right)}}{2} + \frac{1}{2}\right)d x}}}}{3} = - x + \frac{{\color{red}{\left(\frac{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}{2}\right)}}}{3}$$

Ολοκληρώστε όρο προς όρο:

$$- x + \frac{{\color{red}{\int{\left(\cos{\left(2 x \right)} + 1\right)d x}}}}{6} = - x + \frac{{\color{red}{\left(\int{1 d x} + \int{\cos{\left(2 x \right)} d x}\right)}}}{6}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=1$$$:

$$- x + \frac{\int{\cos{\left(2 x \right)} d x}}{6} + \frac{{\color{red}{\int{1 d x}}}}{6} = - x + \frac{\int{\cos{\left(2 x \right)} d x}}{6} + \frac{{\color{red}{x}}}{6}$$

Έστω $$$u=2 x$$$.

Τότε $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{2}$$$.

Επομένως,

$$- \frac{5 x}{6} + \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{6} = - \frac{5 x}{6} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{6}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$- \frac{5 x}{6} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{6} = - \frac{5 x}{6} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{6}$$

Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$- \frac{5 x}{6} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{12} = - \frac{5 x}{6} + \frac{{\color{red}{\sin{\left(u \right)}}}}{12}$$

Θυμηθείτε ότι $$$u=2 x$$$:

$$- \frac{5 x}{6} + \frac{\sin{\left({\color{red}{u}} \right)}}{12} = - \frac{5 x}{6} + \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{12}$$

Επομένως,

$$\int{\left(\frac{\cos^{2}{\left(x \right)}}{3} - 1\right)d x} = - \frac{5 x}{6} + \frac{\sin{\left(2 x \right)}}{12}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(\frac{\cos^{2}{\left(x \right)}}{3} - 1\right)d x} = - \frac{5 x}{6} + \frac{\sin{\left(2 x \right)}}{12}+C$$

Απάντηση

$$$\int \left(\frac{\cos^{2}{\left(x \right)}}{3} - 1\right)\, dx = \left(- \frac{5 x}{6} + \frac{\sin{\left(2 x \right)}}{12}\right) + C$$$A


Please try a new game Rotatly