Integral de $$$\frac{1}{4 x^{10}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{4 x^{10}}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{4}$$$ y $$$f{\left(x \right)} = \frac{1}{x^{10}}$$$:
$${\color{red}{\int{\frac{1}{4 x^{10}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{10}} d x}}{4}\right)}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-10$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{10}} d x}}}}{4}=\frac{{\color{red}{\int{x^{-10} d x}}}}{4}=\frac{{\color{red}{\frac{x^{-10 + 1}}{-10 + 1}}}}{4}=\frac{{\color{red}{\left(- \frac{x^{-9}}{9}\right)}}}{4}=\frac{{\color{red}{\left(- \frac{1}{9 x^{9}}\right)}}}{4}$$
Por lo tanto,
$$\int{\frac{1}{4 x^{10}} d x} = - \frac{1}{36 x^{9}}$$
Añade la constante de integración:
$$\int{\frac{1}{4 x^{10}} d x} = - \frac{1}{36 x^{9}}+C$$
Respuesta
$$$\int \frac{1}{4 x^{10}}\, dx = - \frac{1}{36 x^{9}} + C$$$A