Integral de $$$\frac{x^{3} - 1}{x^{4}}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{x^{3} - 1}{x^{4}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{x^{3} - 1}{x^{4}}\, dx$$$.

Solución

Expand the expression:

$${\color{red}{\int{\frac{x^{3} - 1}{x^{4}} d x}}} = {\color{red}{\int{\left(\frac{1}{x} - \frac{1}{x^{4}}\right)d x}}}$$

Integra término a término:

$${\color{red}{\int{\left(\frac{1}{x} - \frac{1}{x^{4}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{4}} d x} + \int{\frac{1}{x} d x}\right)}}$$

La integral de $$$\frac{1}{x}$$$ es $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$- \int{\frac{1}{x^{4}} d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{\frac{1}{x^{4}} d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-4$$$:

$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{x^{4}} d x}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{x^{-4} d x}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\frac{x^{-4 + 1}}{-4 + 1}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\left(- \frac{x^{-3}}{3}\right)}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\left(- \frac{1}{3 x^{3}}\right)}}$$

Por lo tanto,

$$\int{\frac{x^{3} - 1}{x^{4}} d x} = \ln{\left(\left|{x}\right| \right)} + \frac{1}{3 x^{3}}$$

Añade la constante de integración:

$$\int{\frac{x^{3} - 1}{x^{4}} d x} = \ln{\left(\left|{x}\right| \right)} + \frac{1}{3 x^{3}}+C$$

Respuesta

$$$\int \frac{x^{3} - 1}{x^{4}}\, dx = \left(\ln\left(\left|{x}\right|\right) + \frac{1}{3 x^{3}}\right) + C$$$A


Please try a new game Rotatly