$$$\frac{x^{3} - 1}{x^{4}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{x^{3} - 1}{x^{4}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{x^{3} - 1}{x^{4}}\, dx$$$.

Çözüm

Expand the expression:

$${\color{red}{\int{\frac{x^{3} - 1}{x^{4}} d x}}} = {\color{red}{\int{\left(\frac{1}{x} - \frac{1}{x^{4}}\right)d x}}}$$

Her terimin integralini alın:

$${\color{red}{\int{\left(\frac{1}{x} - \frac{1}{x^{4}}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x^{4}} d x} + \int{\frac{1}{x} d x}\right)}}$$

$$$\frac{1}{x}$$$'nin integrali $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$- \int{\frac{1}{x^{4}} d x} + {\color{red}{\int{\frac{1}{x} d x}}} = - \int{\frac{1}{x^{4}} d x} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=-4$$$ ile uygulayın:

$$\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{\frac{1}{x^{4}} d x}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\int{x^{-4} d x}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\frac{x^{-4 + 1}}{-4 + 1}}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\left(- \frac{x^{-3}}{3}\right)}}=\ln{\left(\left|{x}\right| \right)} - {\color{red}{\left(- \frac{1}{3 x^{3}}\right)}}$$

Dolayısıyla,

$$\int{\frac{x^{3} - 1}{x^{4}} d x} = \ln{\left(\left|{x}\right| \right)} + \frac{1}{3 x^{3}}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{x^{3} - 1}{x^{4}} d x} = \ln{\left(\left|{x}\right| \right)} + \frac{1}{3 x^{3}}+C$$

Cevap

$$$\int \frac{x^{3} - 1}{x^{4}}\, dx = \left(\ln\left(\left|{x}\right|\right) + \frac{1}{3 x^{3}}\right) + C$$$A


Please try a new game Rotatly