Matrix Multiplication Calculator

The calculator will find the product of two matrices (if possible), with steps shown. It multiplies matrices of any size up to 10x10 (2x2, 3x3, 4x4 etc.).

$$$\times$$$
$$$\times$$$

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\end{array}\right]\cdot \left[\begin{array}{cc}2 & 3\\8 & 9\\1 & 1\end{array}\right].$$$

Solution

$$$\left[\begin{array}{ccc}\color{Chartreuse}{4} & \color{Magenta}{5} & \color{DarkMagenta}{7}\\\color{DeepPink}{2} & \color{Brown}{1} & \color{Purple}{0}\end{array}\right]\cdot \left[\begin{array}{cc}\color{DarkBlue}{2} & \color{Blue}{3}\\\color{Fuchsia}{8} & \color{GoldenRod}{9}\\\color{OrangeRed}{1} & \color{DarkCyan}{1}\end{array}\right] = \left[\begin{array}{cc}\color{Chartreuse}{\left(4\right)}\cdot \color{DarkBlue}{\left(2\right)} + \color{Magenta}{\left(5\right)}\cdot \color{Fuchsia}{\left(8\right)} + \color{DarkMagenta}{\left(7\right)}\cdot \color{OrangeRed}{\left(1\right)} & \color{Chartreuse}{\left(4\right)}\cdot \color{Blue}{\left(3\right)} + \color{Magenta}{\left(5\right)}\cdot \color{GoldenRod}{\left(9\right)} + \color{DarkMagenta}{\left(7\right)}\cdot \color{DarkCyan}{\left(1\right)}\\\color{DeepPink}{\left(2\right)}\cdot \color{DarkBlue}{\left(2\right)} + \color{Brown}{\left(1\right)}\cdot \color{Fuchsia}{\left(8\right)} + \color{Purple}{\left(0\right)}\cdot \color{OrangeRed}{\left(1\right)} & \color{DeepPink}{\left(2\right)}\cdot \color{Blue}{\left(3\right)} + \color{Brown}{\left(1\right)}\cdot \color{GoldenRod}{\left(9\right)} + \color{Purple}{\left(0\right)}\cdot \color{DarkCyan}{\left(1\right)}\end{array}\right] = \left[\begin{array}{cc}55 & 64\\12 & 15\end{array}\right]$$$

Answer

$$$\left[\begin{array}{ccc}4 & 5 & 7\\2 & 1 & 0\end{array}\right]\cdot \left[\begin{array}{cc}2 & 3\\8 & 9\\1 & 1\end{array}\right] = \left[\begin{array}{cc}55 & 64\\12 & 15\end{array}\right]$$$A