Matrix Calculator

This calculator will add, subtract, multiply, divide, and raise to power two matrices, with steps shown. It will also find the determinant, inverse, rref (reduced row echelon form), null space, rank, eigenvalues, and eigenvectors and will multiply the matrix by a scalar.

$$$\times$$$
$$$\times$$$

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\left[\begin{array}{ccc}1 & 0 & 0\\0 & 0 & 4\\0 & 1 & 0\end{array}\right] + \left[\begin{array}{ccc}2 & 1 & 4\\5 & 7 & 1\\1 & 2 & 5\end{array}\right].$$$

Solution

$$$\left[\begin{array}{ccc}\color{Green}{1} & \color{BlueViolet}{0} & \color{Brown}{0}\\\color{DarkMagenta}{0} & \color{SaddleBrown}{0} & \color{Peru}{4}\\\color{Red}{0} & \color{DarkBlue}{1} & \color{Chocolate}{0}\end{array}\right] + \left[\begin{array}{ccc}\color{Green}{2} & \color{BlueViolet}{1} & \color{Brown}{4}\\\color{DarkMagenta}{5} & \color{SaddleBrown}{7} & \color{Peru}{1}\\\color{Red}{1} & \color{DarkBlue}{2} & \color{Chocolate}{5}\end{array}\right] = \left[\begin{array}{ccc}\color{Green}{\left(1\right)} + \color{Green}{\left(2\right)} & \color{BlueViolet}{\left(0\right)} + \color{BlueViolet}{\left(1\right)} & \color{Brown}{\left(0\right)} + \color{Brown}{\left(4\right)}\\\color{DarkMagenta}{\left(0\right)} + \color{DarkMagenta}{\left(5\right)} & \color{SaddleBrown}{\left(0\right)} + \color{SaddleBrown}{\left(7\right)} & \color{Peru}{\left(4\right)} + \color{Peru}{\left(1\right)}\\\color{Red}{\left(0\right)} + \color{Red}{\left(1\right)} & \color{DarkBlue}{\left(1\right)} + \color{DarkBlue}{\left(2\right)} & \color{Chocolate}{\left(0\right)} + \color{Chocolate}{\left(5\right)}\end{array}\right] = \left[\begin{array}{ccc}3 & 1 & 4\\5 & 7 & 5\\1 & 3 & 5\end{array}\right]$$$

Answer

$$$\left[\begin{array}{ccc}1 & 0 & 0\\0 & 0 & 4\\0 & 1 & 0\end{array}\right] + \left[\begin{array}{ccc}2 & 1 & 4\\5 & 7 & 1\\1 & 2 & 5\end{array}\right] = \left[\begin{array}{ccc}3 & 1 & 4\\5 & 7 & 5\\1 & 3 & 5\end{array}\right]$$$A