# Unit tangent vector for $\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$

The calculator will find the unit tangent vector to $\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$, with steps shown.

Related calculators: Unit Normal Vector Calculator, Unit Binormal Vector Calculator

$\langle$ $\rangle$
Comma-separated.
Leave empty if you don't need the vector at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Find the unit tangent vector for $\mathbf{\vec{r}\left(t\right)} = \left\langle \sqrt{2} \sqrt{t}, e^{t}, e^{- t}\right\rangle$.

### Solution

To find the unit tangent vector, we need to find the derivative of $\mathbf{\vec{r}\left(t\right)}$ (the tangent vector) and then normalize it (find the unit vector).

$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \frac{\sqrt{2}}{2 \sqrt{t}}, e^{t}, - e^{- t}\right\rangle$ (for steps, see derivative calculator).

Find the unit vector: $\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle$ (for steps, see unit vector calculator).

The unit tangent vector is $\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{e^{t} \sqrt{\left|{t}\right|}}{\sqrt{t} \sqrt{2 e^{4 t} \left|{t}\right| + e^{2 t} + 2 \left|{t}\right|}}, \frac{e^{t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}, - \frac{e^{- t}}{\sqrt{e^{2 t} + \frac{1}{2 \left|{t}\right|} + e^{- 2 t}}}\right\rangle.$A