Unit Binormal Vector Calculator

Find unit binormal vectors step by step

The calculator will find the unit binormal vector to the vector-valued function at the given point, with steps shown.

Related calculators: Unit Tangent Vector Calculator, Unit Normal Vector Calculator, Curvature Calculator

Leave empty if you don't need the vector at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Find the unit binormal vector for $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$.


The unit binormal vector is the cross product of the unit tangent vector and the unit normal vector.

The unit tangent vector is $$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$ (for steps, see unit tangent vector calculator).

The unit normal vector is $$$\mathbf{\vec{N}\left(t\right)} = \left\langle - \cos{\left(t \right)}, 0, - \sin{\left(t \right)}\right\rangle$$$ (for steps, see unit normal vector calculator).

The unit binormal vector is $$$\mathbf{\vec{B}\left(t\right)} = \mathbf{\vec{T}\left(t\right)}\times \mathbf{\vec{N}\left(t\right)} = \left\langle - \frac{\sqrt{3} \sin{\left(t \right)}}{2}, - \frac{1}{2}, \frac{\sqrt{3} \cos{\left(t \right)}}{2}\right\rangle$$$ (for steps, see cross product calculator).


The unit binormal vector is $$$\mathbf{\vec{B}\left(t\right)} = \left\langle - \frac{\sqrt{3} \sin{\left(t \right)}}{2}, - \frac{1}{2}, \frac{\sqrt{3} \cos{\left(t \right)}}{2}\right\rangle.$$$A