# Derivative of $$$4^{x}$$$

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

### Your Input

**Find $$$\frac{d}{dx} \left(4^{x}\right)$$$.**

### Solution

**Apply the exponential rule $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ with $$$n = 4$$$:**

Thus, $$$\frac{d}{dx} \left(4^{x}\right) = 4^{x} \ln\left(4\right)$$$.

### Answer

**$$$\frac{d}{dx} \left(4^{x}\right) = 4^{x} \ln\left(4\right)$$$A**