# Derivative of $$$4 x$$$

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

### Your Input

**Find $$$\frac{d}{dx} \left(4 x\right)$$$.**

### Solution

**Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 4$$$ and $$$f{\left(x \right)} = x$$$:**

**Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:**

Thus, $$$\frac{d}{dx} \left(4 x\right) = 4$$$.

### Answer

**$$$\frac{d}{dx} \left(4 x\right) = 4$$$A**