# Derivative of $$$2 \sin{\left(t \right)}$$$

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

### Your Input

**Find $$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right)$$$.**

### Solution

**Apply the constant multiple rule $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ with $$$c = 2$$$ and $$$f{\left(t \right)} = \sin{\left(t \right)}$$$:**

**The derivative of the sine is $$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:**

Thus, $$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right) = 2 \cos{\left(t \right)}$$$.

### Answer

**$$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right) = 2 \cos{\left(t \right)}$$$A**