# Derivative of $$$- \cos{\left(x \right)}$$$

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

### Your Input

**Find $$$\frac{d}{dx} \left(- \cos{\left(x \right)}\right)$$$.**

### Solution

**Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = -1$$$ and $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:**

**The derivative of the cosine is $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:**

Thus, $$$\frac{d}{dx} \left(- \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$.

### Answer

**$$$\frac{d}{dx} \left(- \cos{\left(x \right)}\right) = \sin{\left(x \right)}$$$A**