Ολοκλήρωμα της $$$\sqrt{a^{x} - 1}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \sqrt{a^{x} - 1}\, dx$$$.
Λύση
Έστω $$$u=\sqrt{a^{x} - 1}$$$.
Τότε $$$du=\left(\sqrt{a^{x} - 1}\right)^{\prime }dx = \frac{a^{x} \ln{\left(a \right)}}{2 \sqrt{a^{x} - 1}} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\frac{a^{x} dx}{\sqrt{a^{x} - 1}} = \frac{2 du}{\ln{\left(a \right)}}$$$.
Επομένως,
$${\color{red}{\int{\sqrt{a^{x} - 1} d x}}} = {\color{red}{\int{\frac{2 u^{2}}{\left(u^{2} + 1\right) \ln{\left(a \right)}} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{2}{\ln{\left(a \right)}}$$$ και $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:
$${\color{red}{\int{\frac{2 u^{2}}{\left(u^{2} + 1\right) \ln{\left(a \right)}} d u}}} = {\color{red}{\left(\frac{2 \int{\frac{u^{2}}{u^{2} + 1} d u}}{\ln{\left(a \right)}}\right)}}$$
Επαναγράψτε και διασπάστε το κλάσμα:
$$\frac{2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{\ln{\left(a \right)}} = \frac{2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{\ln{\left(a \right)}}$$
Ολοκληρώστε όρο προς όρο:
$$\frac{2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{\ln{\left(a \right)}} = \frac{2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}}{\ln{\left(a \right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:
$$\frac{2 \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}}\right)}{\ln{\left(a \right)}} = \frac{2 \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}\right)}{\ln{\left(a \right)}}$$
Το ολοκλήρωμα του $$$\frac{1}{u^{2} + 1}$$$ είναι $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{2 \left(u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}\right)}{\ln{\left(a \right)}} = \frac{2 \left(u - {\color{red}{\operatorname{atan}{\left(u \right)}}}\right)}{\ln{\left(a \right)}}$$
Θυμηθείτε ότι $$$u=\sqrt{a^{x} - 1}$$$:
$$\frac{2 \left(- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}}\right)}{\ln{\left(a \right)}} = \frac{2 \left(- \operatorname{atan}{\left({\color{red}{\sqrt{a^{x} - 1}}} \right)} + {\color{red}{\sqrt{a^{x} - 1}}}\right)}{\ln{\left(a \right)}}$$
Επομένως,
$$\int{\sqrt{a^{x} - 1} d x} = \frac{2 \left(\sqrt{a^{x} - 1} - \operatorname{atan}{\left(\sqrt{a^{x} - 1} \right)}\right)}{\ln{\left(a \right)}}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\sqrt{a^{x} - 1} d x} = \frac{2 \left(\sqrt{a^{x} - 1} - \operatorname{atan}{\left(\sqrt{a^{x} - 1} \right)}\right)}{\ln{\left(a \right)}}+C$$
Απάντηση
$$$\int \sqrt{a^{x} - 1}\, dx = \frac{2 \left(\sqrt{a^{x} - 1} - \operatorname{atan}{\left(\sqrt{a^{x} - 1} \right)}\right)}{\ln\left(a\right)} + C$$$A