Integrale di $$$\sqrt{a^{x} - 1}$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \sqrt{a^{x} - 1}\, dx$$$.
Soluzione
Sia $$$u=\sqrt{a^{x} - 1}$$$.
Quindi $$$du=\left(\sqrt{a^{x} - 1}\right)^{\prime }dx = \frac{a^{x} \ln{\left(a \right)}}{2 \sqrt{a^{x} - 1}} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\frac{a^{x} dx}{\sqrt{a^{x} - 1}} = \frac{2 du}{\ln{\left(a \right)}}$$$.
L'integrale può essere riscritto come
$${\color{red}{\int{\sqrt{a^{x} - 1} d x}}} = {\color{red}{\int{\frac{2 u^{2}}{\left(u^{2} + 1\right) \ln{\left(a \right)}} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{2}{\ln{\left(a \right)}}$$$ e $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:
$${\color{red}{\int{\frac{2 u^{2}}{\left(u^{2} + 1\right) \ln{\left(a \right)}} d u}}} = {\color{red}{\left(\frac{2 \int{\frac{u^{2}}{u^{2} + 1} d u}}{\ln{\left(a \right)}}\right)}}$$
Riscrivi e separa la frazione:
$$\frac{2 {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{\ln{\left(a \right)}} = \frac{2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{\ln{\left(a \right)}}$$
Integra termine per termine:
$$\frac{2 {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{\ln{\left(a \right)}} = \frac{2 {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}}{\ln{\left(a \right)}}$$
Applica la regola della costante $$$\int c\, du = c u$$$ con $$$c=1$$$:
$$\frac{2 \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{\int{1 d u}}}\right)}{\ln{\left(a \right)}} = \frac{2 \left(- \int{\frac{1}{u^{2} + 1} d u} + {\color{red}{u}}\right)}{\ln{\left(a \right)}}$$
L'integrale di $$$\frac{1}{u^{2} + 1}$$$ è $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{2 \left(u - {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}\right)}{\ln{\left(a \right)}} = \frac{2 \left(u - {\color{red}{\operatorname{atan}{\left(u \right)}}}\right)}{\ln{\left(a \right)}}$$
Ricordiamo che $$$u=\sqrt{a^{x} - 1}$$$:
$$\frac{2 \left(- \operatorname{atan}{\left({\color{red}{u}} \right)} + {\color{red}{u}}\right)}{\ln{\left(a \right)}} = \frac{2 \left(- \operatorname{atan}{\left({\color{red}{\sqrt{a^{x} - 1}}} \right)} + {\color{red}{\sqrt{a^{x} - 1}}}\right)}{\ln{\left(a \right)}}$$
Pertanto,
$$\int{\sqrt{a^{x} - 1} d x} = \frac{2 \left(\sqrt{a^{x} - 1} - \operatorname{atan}{\left(\sqrt{a^{x} - 1} \right)}\right)}{\ln{\left(a \right)}}$$
Aggiungi la costante di integrazione:
$$\int{\sqrt{a^{x} - 1} d x} = \frac{2 \left(\sqrt{a^{x} - 1} - \operatorname{atan}{\left(\sqrt{a^{x} - 1} \right)}\right)}{\ln{\left(a \right)}}+C$$
Risposta
$$$\int \sqrt{a^{x} - 1}\, dx = \frac{2 \left(\sqrt{a^{x} - 1} - \operatorname{atan}{\left(\sqrt{a^{x} - 1} \right)}\right)}{\ln\left(a\right)} + C$$$A