Ολοκλήρωμα του $$$\ln\left(x - 1\right)$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\ln\left(x - 1\right)$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \ln\left(x - 1\right)\, dx$$$.

Λύση

Έστω $$$u=x - 1$$$.

Τότε $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.

Επομένως,

$${\color{red}{\int{\ln{\left(x - 1 \right)} d x}}} = {\color{red}{\int{\ln{\left(u \right)} d u}}}$$

Για το ολοκλήρωμα $$$\int{\ln{\left(u \right)} d u}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$.

Έστω $$$\operatorname{c}=\ln{\left(u \right)}$$$ και $$$\operatorname{dv}=du$$$.

Τότε $$$\operatorname{dc}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{1 d u}=u$$$ (τα βήματα φαίνονται »).

Επομένως,

$${\color{red}{\int{\ln{\left(u \right)} d u}}}={\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}={\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:

$$u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}} = u \ln{\left(u \right)} - {\color{red}{u}}$$

Θυμηθείτε ότι $$$u=x - 1$$$:

$$- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - {\color{red}{\left(x - 1\right)}} + {\color{red}{\left(x - 1\right)}} \ln{\left({\color{red}{\left(x - 1\right)}} \right)}$$

Επομένως,

$$\int{\ln{\left(x - 1 \right)} d x} = - x + \left(x - 1\right) \ln{\left(x - 1 \right)} + 1$$

Απλοποιήστε:

$$\int{\ln{\left(x - 1 \right)} d x} = \left(x - 1\right) \left(\ln{\left(x - 1 \right)} - 1\right)$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\ln{\left(x - 1 \right)} d x} = \left(x - 1\right) \left(\ln{\left(x - 1 \right)} - 1\right)+C$$

Απάντηση

$$$\int \ln\left(x - 1\right)\, dx = \left(x - 1\right) \left(\ln\left(x - 1\right) - 1\right) + C$$$A


Please try a new game Rotatly