Ολοκλήρωμα του $$$- x^{22} + x^{7}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$- x^{22} + x^{7}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- x^{22} + x^{7}\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(- x^{22} + x^{7}\right)d x}}} = {\color{red}{\left(\int{x^{7} d x} - \int{x^{22} d x}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=7$$$:

$$- \int{x^{22} d x} + {\color{red}{\int{x^{7} d x}}}=- \int{x^{22} d x} + {\color{red}{\frac{x^{1 + 7}}{1 + 7}}}=- \int{x^{22} d x} + {\color{red}{\left(\frac{x^{8}}{8}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=22$$$:

$$\frac{x^{8}}{8} - {\color{red}{\int{x^{22} d x}}}=\frac{x^{8}}{8} - {\color{red}{\frac{x^{1 + 22}}{1 + 22}}}=\frac{x^{8}}{8} - {\color{red}{\left(\frac{x^{23}}{23}\right)}}$$

Επομένως,

$$\int{\left(- x^{22} + x^{7}\right)d x} = - \frac{x^{23}}{23} + \frac{x^{8}}{8}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- x^{22} + x^{7}\right)d x} = - \frac{x^{23}}{23} + \frac{x^{8}}{8}+C$$

Απάντηση

$$$\int \left(- x^{22} + x^{7}\right)\, dx = \left(- \frac{x^{23}}{23} + \frac{x^{8}}{8}\right) + C$$$A


Please try a new game Rotatly