Ολοκλήρωμα του $$$\tan^{2}{\left(2 x \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\tan^{2}{\left(2 x \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \tan^{2}{\left(2 x \right)}\, dx$$$.

Λύση

Έστω $$$u=2 x$$$.

Τότε $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{2}$$$.

Επομένως,

$${\color{red}{\int{\tan^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{2} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = \tan^{2}{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\tan^{2}{\left(u \right)} d u}}{2}\right)}}$$

Έστω $$$v=\tan{\left(u \right)}$$$.

Τότε $$$u=\operatorname{atan}{\left(v \right)}$$$ και $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$ (τα βήματα μπορούν να φανούν »).

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$$\frac{{\color{red}{\int{\tan^{2}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}}{2}$$

Επαναγράψτε και διασπάστε το κλάσμα:

$$\frac{{\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}}{2} = \frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{2}$$

Ολοκληρώστε όρο προς όρο:

$$\frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{2} = \frac{{\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}}{2}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dv = c v$$$ με $$$c=1$$$:

$$- \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} + \frac{{\color{red}{\int{1 d v}}}}{2} = - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} + \frac{{\color{red}{v}}}{2}$$

Το ολοκλήρωμα του $$$\frac{1}{v^{2} + 1}$$$ είναι $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:

$$\frac{v}{2} - \frac{{\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{2} = \frac{v}{2} - \frac{{\color{red}{\operatorname{atan}{\left(v \right)}}}}{2}$$

Θυμηθείτε ότι $$$v=\tan{\left(u \right)}$$$:

$$- \frac{\operatorname{atan}{\left({\color{red}{v}} \right)}}{2} + \frac{{\color{red}{v}}}{2} = - \frac{\operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)}}{2} + \frac{{\color{red}{\tan{\left(u \right)}}}}{2}$$

Θυμηθείτε ότι $$$u=2 x$$$:

$$\frac{\tan{\left({\color{red}{u}} \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left({\color{red}{u}} \right)} \right)}}{2} = \frac{\tan{\left({\color{red}{\left(2 x\right)}} \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left({\color{red}{\left(2 x\right)}} \right)} \right)}}{2}$$

Επομένως,

$$\int{\tan^{2}{\left(2 x \right)} d x} = \frac{\tan{\left(2 x \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left(2 x \right)} \right)}}{2}$$

Απλοποιήστε:

$$\int{\tan^{2}{\left(2 x \right)} d x} = - x + \frac{\tan{\left(2 x \right)}}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\tan^{2}{\left(2 x \right)} d x} = - x + \frac{\tan{\left(2 x \right)}}{2}+C$$

Απάντηση

$$$\int \tan^{2}{\left(2 x \right)}\, dx = \left(- x + \frac{\tan{\left(2 x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly