Integral of $$$\tan^{2}{\left(2 x \right)}$$$

The calculator will find the integral/antiderivative of $$$\tan^{2}{\left(2 x \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \tan^{2}{\left(2 x \right)}\, dx$$$.

Solution

Let $$$u=2 x$$$.

Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.

Therefore,

$${\color{red}{\int{\tan^{2}{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{2} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \tan^{2}{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\tan^{2}{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\tan^{2}{\left(u \right)} d u}}{2}\right)}}$$

Let $$$v=\tan{\left(u \right)}$$$.

Then $$$u=\operatorname{atan}{\left(v \right)}$$$ and $$$du=\left(\operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{dv}{v^{2} + 1}$$$ (steps can be seen »).

The integral can be rewritten as

$$\frac{{\color{red}{\int{\tan^{2}{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}}{2}$$

Rewrite and split the fraction:

$$\frac{{\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}}{2} = \frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{2}$$

Integrate term by term:

$$\frac{{\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}}{2} = \frac{{\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}}{2}$$

Apply the constant rule $$$\int c\, dv = c v$$$ with $$$c=1$$$:

$$- \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} + \frac{{\color{red}{\int{1 d v}}}}{2} = - \frac{\int{\frac{1}{v^{2} + 1} d v}}{2} + \frac{{\color{red}{v}}}{2}$$

The integral of $$$\frac{1}{v^{2} + 1}$$$ is $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:

$$\frac{v}{2} - \frac{{\color{red}{\int{\frac{1}{v^{2} + 1} d v}}}}{2} = \frac{v}{2} - \frac{{\color{red}{\operatorname{atan}{\left(v \right)}}}}{2}$$

Recall that $$$v=\tan{\left(u \right)}$$$:

$$- \frac{\operatorname{atan}{\left({\color{red}{v}} \right)}}{2} + \frac{{\color{red}{v}}}{2} = - \frac{\operatorname{atan}{\left({\color{red}{\tan{\left(u \right)}}} \right)}}{2} + \frac{{\color{red}{\tan{\left(u \right)}}}}{2}$$

Recall that $$$u=2 x$$$:

$$\frac{\tan{\left({\color{red}{u}} \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left({\color{red}{u}} \right)} \right)}}{2} = \frac{\tan{\left({\color{red}{\left(2 x\right)}} \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left({\color{red}{\left(2 x\right)}} \right)} \right)}}{2}$$

Therefore,

$$\int{\tan^{2}{\left(2 x \right)} d x} = \frac{\tan{\left(2 x \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left(2 x \right)} \right)}}{2}$$

Simplify:

$$\int{\tan^{2}{\left(2 x \right)} d x} = - x + \frac{\tan{\left(2 x \right)}}{2}$$

Add the constant of integration:

$$\int{\tan^{2}{\left(2 x \right)} d x} = - x + \frac{\tan{\left(2 x \right)}}{2}+C$$

Answer

$$$\int \tan^{2}{\left(2 x \right)}\, dx = \left(- x + \frac{\tan{\left(2 x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly