Ολοκλήρωμα του $$$e^{4 x}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$e^{4 x}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int e^{4 x}\, dx$$$.

Λύση

Έστω $$$u=4 x$$$.

Τότε $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{4}$$$.

Επομένως,

$${\color{red}{\int{e^{4 x} d x}}} = {\color{red}{\int{\frac{e^{u}}{4} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{4}$$$ και $$$f{\left(u \right)} = e^{u}$$$:

$${\color{red}{\int{\frac{e^{u}}{4} d u}}} = {\color{red}{\left(\frac{\int{e^{u} d u}}{4}\right)}}$$

Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:

$$\frac{{\color{red}{\int{e^{u} d u}}}}{4} = \frac{{\color{red}{e^{u}}}}{4}$$

Θυμηθείτε ότι $$$u=4 x$$$:

$$\frac{e^{{\color{red}{u}}}}{4} = \frac{e^{{\color{red}{\left(4 x\right)}}}}{4}$$

Επομένως,

$$\int{e^{4 x} d x} = \frac{e^{4 x}}{4}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{e^{4 x} d x} = \frac{e^{4 x}}{4}+C$$

Απάντηση

$$$\int e^{4 x}\, dx = \frac{e^{4 x}}{4} + C$$$A


Please try a new game Rotatly