Ολοκλήρωμα του $$$3 e^{3 x}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int 3 e^{3 x}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=3$$$ και $$$f{\left(x \right)} = e^{3 x}$$$:
$${\color{red}{\int{3 e^{3 x} d x}}} = {\color{red}{\left(3 \int{e^{3 x} d x}\right)}}$$
Έστω $$$u=3 x$$$.
Τότε $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{3}$$$.
Το ολοκλήρωμα γίνεται
$$3 {\color{red}{\int{e^{3 x} d x}}} = 3 {\color{red}{\int{\frac{e^{u}}{3} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{3}$$$ και $$$f{\left(u \right)} = e^{u}$$$:
$$3 {\color{red}{\int{\frac{e^{u}}{3} d u}}} = 3 {\color{red}{\left(\frac{\int{e^{u} d u}}{3}\right)}}$$
Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Θυμηθείτε ότι $$$u=3 x$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\left(3 x\right)}}}$$
Επομένως,
$$\int{3 e^{3 x} d x} = e^{3 x}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{3 e^{3 x} d x} = e^{3 x}+C$$
Απάντηση
$$$\int 3 e^{3 x}\, dx = e^{3 x} + C$$$A