Ολοκλήρωμα του $$$\frac{e^{- x}}{25}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{e^{- x}}{25}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{25}$$$ και $$$f{\left(x \right)} = e^{- x}$$$:
$${\color{red}{\int{\frac{e^{- x}}{25} d x}}} = {\color{red}{\left(\frac{\int{e^{- x} d x}}{25}\right)}}$$
Έστω $$$u=- x$$$.
Τότε $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = - du$$$.
Επομένως,
$$\frac{{\color{red}{\int{e^{- x} d x}}}}{25} = \frac{{\color{red}{\int{\left(- e^{u}\right)d u}}}}{25}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{{\color{red}{\int{\left(- e^{u}\right)d u}}}}{25} = \frac{{\color{red}{\left(- \int{e^{u} d u}\right)}}}{25}$$
Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{{\color{red}{\int{e^{u} d u}}}}{25} = - \frac{{\color{red}{e^{u}}}}{25}$$
Θυμηθείτε ότι $$$u=- x$$$:
$$- \frac{e^{{\color{red}{u}}}}{25} = - \frac{e^{{\color{red}{\left(- x\right)}}}}{25}$$
Επομένως,
$$\int{\frac{e^{- x}}{25} d x} = - \frac{e^{- x}}{25}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{e^{- x}}{25} d x} = - \frac{e^{- x}}{25}+C$$
Απάντηση
$$$\int \frac{e^{- x}}{25}\, dx = - \frac{e^{- x}}{25} + C$$$A