Ολοκλήρωμα της $$$\frac{1}{a^{2} x^{4}}$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$\frac{1}{a^{2} x^{4}}$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{1}{a^{2} x^{4}}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{a^{2}}$$$ και $$$f{\left(x \right)} = \frac{1}{x^{4}}$$$:

$${\color{red}{\int{\frac{1}{a^{2} x^{4}} d x}}} = {\color{red}{\frac{\int{\frac{1}{x^{4}} d x}}{a^{2}}}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=-4$$$:

$$\frac{{\color{red}{\int{\frac{1}{x^{4}} d x}}}}{a^{2}}=\frac{{\color{red}{\int{x^{-4} d x}}}}{a^{2}}=\frac{{\color{red}{\frac{x^{-4 + 1}}{-4 + 1}}}}{a^{2}}=\frac{{\color{red}{\left(- \frac{x^{-3}}{3}\right)}}}{a^{2}}=\frac{{\color{red}{\left(- \frac{1}{3 x^{3}}\right)}}}{a^{2}}$$

Επομένως,

$$\int{\frac{1}{a^{2} x^{4}} d x} = - \frac{1}{3 a^{2} x^{3}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{a^{2} x^{4}} d x} = - \frac{1}{3 a^{2} x^{3}}+C$$

Απάντηση

$$$\int \frac{1}{a^{2} x^{4}}\, dx = - \frac{1}{3 a^{2} x^{3}} + C$$$A


Please try a new game Rotatly