Ολοκλήρωμα του $$$\frac{1}{x^{2} - 16}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{1}{x^{2} - 16}\, dx$$$.
Λύση
Εκτελέστε αποσύνθεση σε μερικά κλάσματα (τα βήματα μπορούν να προβληθούν »):
$${\color{red}{\int{\frac{1}{x^{2} - 16} d x}}} = {\color{red}{\int{\left(- \frac{1}{8 \left(x + 4\right)} + \frac{1}{8 \left(x - 4\right)}\right)d x}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(- \frac{1}{8 \left(x + 4\right)} + \frac{1}{8 \left(x - 4\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{8 \left(x - 4\right)} d x} - \int{\frac{1}{8 \left(x + 4\right)} d x}\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{8}$$$ και $$$f{\left(x \right)} = \frac{1}{x + 4}$$$:
$$\int{\frac{1}{8 \left(x - 4\right)} d x} - {\color{red}{\int{\frac{1}{8 \left(x + 4\right)} d x}}} = \int{\frac{1}{8 \left(x - 4\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x + 4} d x}}{8}\right)}}$$
Έστω $$$u=x + 4$$$.
Τότε $$$du=\left(x + 4\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.
Επομένως,
$$\int{\frac{1}{8 \left(x - 4\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x + 4} d x}}}}{8} = \int{\frac{1}{8 \left(x - 4\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\int{\frac{1}{8 \left(x - 4\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = \int{\frac{1}{8 \left(x - 4\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$
Θυμηθείτε ότι $$$u=x + 4$$$:
$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} + \int{\frac{1}{8 \left(x - 4\right)} d x} = - \frac{\ln{\left(\left|{{\color{red}{\left(x + 4\right)}}}\right| \right)}}{8} + \int{\frac{1}{8 \left(x - 4\right)} d x}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{8}$$$ και $$$f{\left(x \right)} = \frac{1}{x - 4}$$$:
$$- \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + {\color{red}{\int{\frac{1}{8 \left(x - 4\right)} d x}}} = - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + {\color{red}{\left(\frac{\int{\frac{1}{x - 4} d x}}{8}\right)}}$$
Έστω $$$u=x - 4$$$.
Τότε $$$du=\left(x - 4\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.
Το ολοκλήρωμα γίνεται
$$- \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{x - 4} d x}}}}{8} = - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$
Θυμηθείτε ότι $$$u=x - 4$$$:
$$- \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 4\right)}}}\right| \right)}}{8}$$
Επομένως,
$$\int{\frac{1}{x^{2} - 16} d x} = \frac{\ln{\left(\left|{x - 4}\right| \right)}}{8} - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1}{x^{2} - 16} d x} = \frac{\ln{\left(\left|{x - 4}\right| \right)}}{8} - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8}+C$$
Απάντηση
$$$\int \frac{1}{x^{2} - 16}\, dx = \left(\frac{\ln\left(\left|{x - 4}\right|\right)}{8} - \frac{\ln\left(\left|{x + 4}\right|\right)}{8}\right) + C$$$A