Integrale di $$$\frac{1}{x^{2} - 16}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{x^{2} - 16}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{x^{2} - 16}\, dx$$$.

Soluzione

Esegui la scomposizione in fratti semplici (i passaggi possono essere visualizzati »):

$${\color{red}{\int{\frac{1}{x^{2} - 16} d x}}} = {\color{red}{\int{\left(- \frac{1}{8 \left(x + 4\right)} + \frac{1}{8 \left(x - 4\right)}\right)d x}}}$$

Integra termine per termine:

$${\color{red}{\int{\left(- \frac{1}{8 \left(x + 4\right)} + \frac{1}{8 \left(x - 4\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{8 \left(x - 4\right)} d x} - \int{\frac{1}{8 \left(x + 4\right)} d x}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{8}$$$ e $$$f{\left(x \right)} = \frac{1}{x + 4}$$$:

$$\int{\frac{1}{8 \left(x - 4\right)} d x} - {\color{red}{\int{\frac{1}{8 \left(x + 4\right)} d x}}} = \int{\frac{1}{8 \left(x - 4\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x + 4} d x}}{8}\right)}}$$

Sia $$$u=x + 4$$$.

Quindi $$$du=\left(x + 4\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.

L'integrale diventa

$$\int{\frac{1}{8 \left(x - 4\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x + 4} d x}}}}{8} = \int{\frac{1}{8 \left(x - 4\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\int{\frac{1}{8 \left(x - 4\right)} d x} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = \int{\frac{1}{8 \left(x - 4\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$

Ricordiamo che $$$u=x + 4$$$:

$$- \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} + \int{\frac{1}{8 \left(x - 4\right)} d x} = - \frac{\ln{\left(\left|{{\color{red}{\left(x + 4\right)}}}\right| \right)}}{8} + \int{\frac{1}{8 \left(x - 4\right)} d x}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{8}$$$ e $$$f{\left(x \right)} = \frac{1}{x - 4}$$$:

$$- \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + {\color{red}{\int{\frac{1}{8 \left(x - 4\right)} d x}}} = - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + {\color{red}{\left(\frac{\int{\frac{1}{x - 4} d x}}{8}\right)}}$$

Sia $$$u=x - 4$$$.

Quindi $$$du=\left(x - 4\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.

Quindi,

$$- \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{x - 4} d x}}}}{8} = - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{8} = - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$

Ricordiamo che $$$u=x - 4$$$:

$$- \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} = - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 4\right)}}}\right| \right)}}{8}$$

Pertanto,

$$\int{\frac{1}{x^{2} - 16} d x} = \frac{\ln{\left(\left|{x - 4}\right| \right)}}{8} - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{x^{2} - 16} d x} = \frac{\ln{\left(\left|{x - 4}\right| \right)}}{8} - \frac{\ln{\left(\left|{x + 4}\right| \right)}}{8}+C$$

Risposta

$$$\int \frac{1}{x^{2} - 16}\, dx = \left(\frac{\ln\left(\left|{x - 4}\right|\right)}{8} - \frac{\ln\left(\left|{x + 4}\right|\right)}{8}\right) + C$$$A


Please try a new game Rotatly