Ολοκλήρωμα του $$$\frac{x^{2} + 1}{x \left(x^{2} - 1\right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{x^{2} + 1}{x \left(x^{2} - 1\right)}\, dx$$$.
Λύση
Εκτελέστε αποσύνθεση σε μερικά κλάσματα (τα βήματα μπορούν να προβληθούν »):
$${\color{red}{\int{\frac{x^{2} + 1}{x \left(x^{2} - 1\right)} d x}}} = {\color{red}{\int{\left(\frac{1}{x + 1} + \frac{1}{x - 1} - \frac{1}{x}\right)d x}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(\frac{1}{x + 1} + \frac{1}{x - 1} - \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{\frac{1}{x} d x} + \int{\frac{1}{x - 1} d x} + \int{\frac{1}{x + 1} d x}\right)}}$$
Έστω $$$u=x + 1$$$.
Τότε $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$- \int{\frac{1}{x} d x} + \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{x + 1} d x}}} = - \int{\frac{1}{x} d x} + \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{u} d u}}}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{1}{x} d x} + \int{\frac{1}{x - 1} d x} + {\color{red}{\int{\frac{1}{u} d u}}} = - \int{\frac{1}{x} d x} + \int{\frac{1}{x - 1} d x} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Θυμηθείτε ότι $$$u=x + 1$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{\frac{1}{x} d x} + \int{\frac{1}{x - 1} d x} = \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)} - \int{\frac{1}{x} d x} + \int{\frac{1}{x - 1} d x}$$
Έστω $$$u=x - 1$$$.
Τότε $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.
Επομένως,
$$\ln{\left(\left|{x + 1}\right| \right)} - \int{\frac{1}{x} d x} + {\color{red}{\int{\frac{1}{x - 1} d x}}} = \ln{\left(\left|{x + 1}\right| \right)} - \int{\frac{1}{x} d x} + {\color{red}{\int{\frac{1}{u} d u}}}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\ln{\left(\left|{x + 1}\right| \right)} - \int{\frac{1}{x} d x} + {\color{red}{\int{\frac{1}{u} d u}}} = \ln{\left(\left|{x + 1}\right| \right)} - \int{\frac{1}{x} d x} + {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Θυμηθείτε ότι $$$u=x - 1$$$:
$$\ln{\left(\left|{x + 1}\right| \right)} + \ln{\left(\left|{{\color{red}{u}}}\right| \right)} - \int{\frac{1}{x} d x} = \ln{\left(\left|{x + 1}\right| \right)} + \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)} - \int{\frac{1}{x} d x}$$
Το ολοκλήρωμα του $$$\frac{1}{x}$$$ είναι $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)} - {\color{red}{\int{\frac{1}{x} d x}}} = \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)} - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Επομένως,
$$\int{\frac{x^{2} + 1}{x \left(x^{2} - 1\right)} d x} = - \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{x^{2} + 1}{x \left(x^{2} - 1\right)} d x} = - \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 1}\right| \right)} + \ln{\left(\left|{x + 1}\right| \right)}+C$$
Απάντηση
$$$\int \frac{x^{2} + 1}{x \left(x^{2} - 1\right)}\, dx = \left(- \ln\left(\left|{x}\right|\right) + \ln\left(\left|{x - 1}\right|\right) + \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A