Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Υπολογίστε ορισμένα και ακατάλληλα ολοκληρώματα βήμα προς βήμα
Η αριθμομηχανή θα προσπαθήσει να υπολογίσει το ορισμένο (δηλ. με όρια) ολοκλήρωμα, συμπεριλαμβανομένου του ατελούς, παρουσιάζοντας τα βήματα.
Solution
Your input: calculate $$$\int_{1}^{2}\left( x^{4} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{x^{4} d x}=\frac{x^{5}}{5}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{x^{5}}{5}\right)|_{\left(x=2\right)}=\frac{32}{5}$$$
$$$\left(\frac{x^{5}}{5}\right)|_{\left(x=1\right)}=\frac{1}{5}$$$
$$$\int_{1}^{2}\left( x^{4} \right)dx=\left(\frac{x^{5}}{5}\right)|_{\left(x=2\right)}-\left(\frac{x^{5}}{5}\right)|_{\left(x=1\right)}=\frac{31}{5}$$$
Answer: $$$\int_{1}^{2}\left( x^{4} \right)dx=\frac{31}{5}\approx 6.2$$$