Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Υπολογίστε ορισμένα και ακατάλληλα ολοκληρώματα βήμα προς βήμα
Η αριθμομηχανή θα προσπαθήσει να υπολογίσει το ορισμένο (δηλ. με όρια) ολοκλήρωμα, συμπεριλαμβανομένου του ατελούς, παρουσιάζοντας τα βήματα.
Solution
Your input: calculate $$$\int_{0}^{2}\left( x^{3} - x^{2} - 2 x \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\left(x^{3} - x^{2} - 2 x\right)d x}=x^{2} \left(\frac{x^{2}}{4} - \frac{x}{3} - 1\right)$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(x^{2} \left(\frac{x^{2}}{4} - \frac{x}{3} - 1\right)\right)|_{\left(x=2\right)}=- \frac{8}{3}$$$
$$$\left(x^{2} \left(\frac{x^{2}}{4} - \frac{x}{3} - 1\right)\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{2}\left( x^{3} - x^{2} - 2 x \right)dx=\left(x^{2} \left(\frac{x^{2}}{4} - \frac{x}{3} - 1\right)\right)|_{\left(x=2\right)}-\left(x^{2} \left(\frac{x^{2}}{4} - \frac{x}{3} - 1\right)\right)|_{\left(x=0\right)}=- \frac{8}{3}$$$
Answer: $$$\int_{0}^{2}\left( x^{3} - x^{2} - 2 x \right)dx=- \frac{8}{3}\approx -2.66666666666667$$$