Παράγωγος της $$$x \sqrt{\ln\left(3\right)}$$$

Η αριθμομηχανή θα βρει την παράγωγο της συνάρτησης $$$x \sqrt{\ln\left(3\right)}$$$, με εμφάνιση των βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d}{dx} \left(x \sqrt{\ln\left(3\right)}\right)$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = \sqrt{\ln\left(3\right)}$$$ και $$$f{\left(x \right)} = x$$$:

$${\color{red}\left(\frac{d}{dx} \left(x \sqrt{\ln\left(3\right)}\right)\right)} = {\color{red}\left(\sqrt{\ln\left(3\right)} \frac{d}{dx} \left(x\right)\right)}$$

Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\sqrt{\ln\left(3\right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \sqrt{\ln\left(3\right)} {\color{red}\left(1\right)}$$

Άρα, $$$\frac{d}{dx} \left(x \sqrt{\ln\left(3\right)}\right) = \sqrt{\ln\left(3\right)}$$$.

Απάντηση

$$$\frac{d}{dx} \left(x \sqrt{\ln\left(3\right)}\right) = \sqrt{\ln\left(3\right)}$$$A


Please try a new game Rotatly