Παράγωγος της $$$x \left(x - 128\right)$$$
Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα
Η είσοδός σας
Βρείτε $$$\frac{d}{dx} \left(x \left(x - 128\right)\right)$$$.
Λύση
Εφαρμόστε τον κανόνα του γινομένου $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ με $$$f{\left(x \right)} = x$$$ και $$$g{\left(x \right)} = x - 128$$$:
$${\color{red}\left(\frac{d}{dx} \left(x \left(x - 128\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \left(x - 128\right) + x \frac{d}{dx} \left(x - 128\right)\right)}$$Η παράγωγος του αθροίσματος/της διαφοράς είναι το άθροισμα/η διαφορά των παραγώγων:
$$x {\color{red}\left(\frac{d}{dx} \left(x - 128\right)\right)} + \left(x - 128\right) \frac{d}{dx} \left(x\right) = x {\color{red}\left(\frac{d}{dx} \left(x\right) - \frac{d}{dx} \left(128\right)\right)} + \left(x - 128\right) \frac{d}{dx} \left(x\right)$$Η παράγωγος μιας σταθεράς είναι $$$0$$$:
$$x \left(- {\color{red}\left(\frac{d}{dx} \left(128\right)\right)} + \frac{d}{dx} \left(x\right)\right) + \left(x - 128\right) \frac{d}{dx} \left(x\right) = x \left(- {\color{red}\left(0\right)} + \frac{d}{dx} \left(x\right)\right) + \left(x - 128\right) \frac{d}{dx} \left(x\right)$$Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$x {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \left(x - 128\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x {\color{red}\left(1\right)} + \left(x - 128\right) {\color{red}\left(1\right)}$$Άρα, $$$\frac{d}{dx} \left(x \left(x - 128\right)\right) = 2 x - 128$$$.
Απάντηση
$$$\frac{d}{dx} \left(x \left(x - 128\right)\right) = 2 x - 128$$$A