Παράγωγος της $$$\cos^{2}{\left(x \right)}$$$
Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα
Η είσοδός σας
Βρείτε $$$\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right)$$$.
Λύση
Η συνάρτηση $$$\cos^{2}{\left(x \right)}$$$ είναι η σύνθεση $$$f{\left(g{\left(x \right)} \right)}$$$ των δύο συναρτήσεων $$$f{\left(u \right)} = u^{2}$$$ και $$$g{\left(x \right)} = \cos{\left(x \right)}$$$.
Εφαρμόστε τον κανόνα της αλυσίδας $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ με $$$n = 2$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)$$Επιστροφή στην αρχική μεταβλητή:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = 2 {\color{red}\left(\cos{\left(x \right)}\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)$$Η παράγωγος του συνημιτόνου είναι $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$2 \cos{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} = 2 \cos{\left(x \right)} {\color{red}\left(- \sin{\left(x \right)}\right)}$$Απλοποιήστε:
$$- 2 \sin{\left(x \right)} \cos{\left(x \right)} = - \sin{\left(2 x \right)}$$Άρα, $$$\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right) = - \sin{\left(2 x \right)}$$$.
Απάντηση
$$$\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right) = - \sin{\left(2 x \right)}$$$A