Παράγωγος της $$$9 t^{2} + 4$$$
Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα
Η είσοδός σας
Βρείτε $$$\frac{d}{dt} \left(9 t^{2} + 4\right)$$$.
Λύση
Η παράγωγος του αθροίσματος/της διαφοράς είναι το άθροισμα/η διαφορά των παραγώγων:
$${\color{red}\left(\frac{d}{dt} \left(9 t^{2} + 4\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(9 t^{2}\right) + \frac{d}{dt} \left(4\right)\right)}$$Η παράγωγος μιας σταθεράς είναι $$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(4\right)\right)} + \frac{d}{dt} \left(9 t^{2}\right) = {\color{red}\left(0\right)} + \frac{d}{dt} \left(9 t^{2}\right)$$Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ με $$$c = 9$$$ και $$$f{\left(t \right)} = t^{2}$$$:
$${\color{red}\left(\frac{d}{dt} \left(9 t^{2}\right)\right)} = {\color{red}\left(9 \frac{d}{dt} \left(t^{2}\right)\right)}$$Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ με $$$n = 2$$$:
$$9 {\color{red}\left(\frac{d}{dt} \left(t^{2}\right)\right)} = 9 {\color{red}\left(2 t\right)}$$Άρα, $$$\frac{d}{dt} \left(9 t^{2} + 4\right) = 18 t$$$.
Απάντηση
$$$\frac{d}{dt} \left(9 t^{2} + 4\right) = 18 t$$$A