Παράγωγος της $$$5 x^{x}$$$
Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα
Η είσοδός σας
Βρείτε $$$\frac{d}{dx} \left(5 x^{x}\right)$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = 5$$$ και $$$f{\left(x \right)} = x^{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(5 x^{x}\right)\right)} = {\color{red}\left(5 \frac{d}{dx} \left(x^{x}\right)\right)}$$Χρησιμοποιήστε τον τύπο $$$f^{g{\left(x \right)}}{\left(x \right)} = e^{g{\left(x \right)} \ln\left(f{\left(x \right)}\right)}$$$ με $$$f{\left(x \right)} = x$$$ και $$$g{\left(x \right)} = x$$$ για να ξαναγράψετε τη σύνθετη παράσταση:
$$5 {\color{red}\left(\frac{d}{dx} \left(x^{x}\right)\right)} = 5 {\color{red}\left(\frac{d}{dx} \left(e^{x \ln\left(x\right)}\right)\right)}$$Η συνάρτηση $$$e^{x \ln\left(x\right)}$$$ είναι η σύνθεση $$$f{\left(g{\left(x \right)} \right)}$$$ των δύο συναρτήσεων $$$f{\left(u \right)} = e^{u}$$$ και $$$g{\left(x \right)} = x \ln\left(x\right)$$$.
Εφαρμόστε τον κανόνα της αλυσίδας $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$5 {\color{red}\left(\frac{d}{dx} \left(e^{x \ln\left(x\right)}\right)\right)} = 5 {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(x \ln\left(x\right)\right)\right)}$$Η παράγωγος της εκθετικής συνάρτησης είναι $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$$5 {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(x \ln\left(x\right)\right) = 5 {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(x \ln\left(x\right)\right)$$Επιστροφή στην αρχική μεταβλητή:
$$5 e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(x \ln\left(x\right)\right) = 5 e^{{\color{red}\left(x \ln\left(x\right)\right)}} \frac{d}{dx} \left(x \ln\left(x\right)\right) = 5 x^{x} \frac{d}{dx} \left(x \ln\left(x\right)\right)$$Εφαρμόστε τον κανόνα του γινομένου $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ με $$$f{\left(x \right)} = x$$$ και $$$g{\left(x \right)} = \ln\left(x\right)$$$:
$$5 x^{x} {\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = 5 x^{x} {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$Η παράγωγος του φυσικού λογαρίθμου είναι $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$5 x^{x} \left(x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right)\right) = 5 x^{x} \left(x {\color{red}\left(\frac{1}{x}\right)} + \ln\left(x\right) \frac{d}{dx} \left(x\right)\right)$$Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$5 x^{x} \left(\ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 1\right) = 5 x^{x} \left(\ln\left(x\right) {\color{red}\left(1\right)} + 1\right)$$Άρα, $$$\frac{d}{dx} \left(5 x^{x}\right) = 5 x^{x} \left(\ln\left(x\right) + 1\right)$$$.
Απάντηση
$$$\frac{d}{dx} \left(5 x^{x}\right) = 5 x^{x} \left(\ln\left(x\right) + 1\right)$$$A