Παράγωγος της $$$2 - \frac{1}{t^{2}}$$$

Η αριθμομηχανή θα βρει την παράγωγο της συνάρτησης $$$2 - \frac{1}{t^{2}}$$$, με εμφάνιση των βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right)$$$.

Λύση

Η παράγωγος του αθροίσματος/της διαφοράς είναι το άθροισμα/η διαφορά των παραγώγων:

$${\color{red}\left(\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(2\right) - \frac{d}{dt} \left(\frac{1}{t^{2}}\right)\right)}$$

Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ με $$$n = -2$$$:

$$- {\color{red}\left(\frac{d}{dt} \left(\frac{1}{t^{2}}\right)\right)} + \frac{d}{dt} \left(2\right) = - {\color{red}\left(- \frac{2}{t^{3}}\right)} + \frac{d}{dt} \left(2\right)$$

Η παράγωγος μιας σταθεράς είναι $$$0$$$:

$${\color{red}\left(\frac{d}{dt} \left(2\right)\right)} + \frac{2}{t^{3}} = {\color{red}\left(0\right)} + \frac{2}{t^{3}}$$

Άρα, $$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right) = \frac{2}{t^{3}}$$$.

Απάντηση

$$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right) = \frac{2}{t^{3}}$$$A


Please try a new game Rotatly