Παράγωγος της $$$2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}$$$

Η αριθμομηχανή θα βρει την παράγωγο της συνάρτησης $$$2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}$$$, με εμφάνιση των βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d}{dx} \left(2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}\right)$$$.

Λύση

Η παράγωγος του αθροίσματος/της διαφοράς είναι το άθροισμα/η διαφορά των παραγώγων:

$${\color{red}\left(\frac{d}{dx} \left(2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right) - \frac{d}{dx} \left(2^{\frac{2}{3}} x\right) + \frac{d}{dx} \left(\sqrt[3]{2}\right)\right)}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = 2^{\frac{2}{3}}$$$ και $$$f{\left(x \right)} = x$$$:

$$- {\color{red}\left(\frac{d}{dx} \left(2^{\frac{2}{3}} x\right)\right)} + \frac{d}{dx} \left(\sqrt[3]{2}\right) + \frac{d}{dx} \left(2 x^{2}\right) = - {\color{red}\left(2^{\frac{2}{3}} \frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(\sqrt[3]{2}\right) + \frac{d}{dx} \left(2 x^{2}\right)$$

Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- 2^{\frac{2}{3}} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(\sqrt[3]{2}\right) + \frac{d}{dx} \left(2 x^{2}\right) = - 2^{\frac{2}{3}} {\color{red}\left(1\right)} + \frac{d}{dx} \left(\sqrt[3]{2}\right) + \frac{d}{dx} \left(2 x^{2}\right)$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = 2$$$ και $$$f{\left(x \right)} = x^{2}$$$:

$${\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right)\right)} + \frac{d}{dx} \left(\sqrt[3]{2}\right) - 2^{\frac{2}{3}} = {\color{red}\left(2 \frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(\sqrt[3]{2}\right) - 2^{\frac{2}{3}}$$

Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 2$$$:

$$2 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(\sqrt[3]{2}\right) - 2^{\frac{2}{3}} = 2 {\color{red}\left(2 x\right)} + \frac{d}{dx} \left(\sqrt[3]{2}\right) - 2^{\frac{2}{3}}$$

Η παράγωγος μιας σταθεράς είναι $$$0$$$:

$$4 x + {\color{red}\left(\frac{d}{dx} \left(\sqrt[3]{2}\right)\right)} - 2^{\frac{2}{3}} = 4 x + {\color{red}\left(0\right)} - 2^{\frac{2}{3}}$$

Άρα, $$$\frac{d}{dx} \left(2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}\right) = 4 x - 2^{\frac{2}{3}}$$$.

Απάντηση

$$$\frac{d}{dx} \left(2 x^{2} - 2^{\frac{2}{3}} x + \sqrt[3]{2}\right) = 4 x - 2^{\frac{2}{3}}$$$A


Please try a new game Rotatly