Παράγωγος της $$$2 \sin{\left(t \right)}$$$
Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα
Η είσοδός σας
Βρείτε $$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right)$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ με $$$c = 2$$$ και $$$f{\left(t \right)} = \sin{\left(t \right)}$$$:
$${\color{red}\left(\frac{d}{dt} \left(2 \sin{\left(t \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}$$Η παράγωγος του ημιτόνου είναι $$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:
$$2 {\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)} = 2 {\color{red}\left(\cos{\left(t \right)}\right)}$$Άρα, $$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right) = 2 \cos{\left(t \right)}$$$.
Απάντηση
$$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right) = 2 \cos{\left(t \right)}$$$A