Παράγωγος της $$$1 - 4 v^{2}$$$

Η αριθμομηχανή θα βρει την παράγωγο της συνάρτησης $$$1 - 4 v^{2}$$$, με εμφάνιση των βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d}{dv} \left(1 - 4 v^{2}\right)$$$.

Λύση

Η παράγωγος του αθροίσματος/της διαφοράς είναι το άθροισμα/η διαφορά των παραγώγων:

$${\color{red}\left(\frac{d}{dv} \left(1 - 4 v^{2}\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(1\right) - \frac{d}{dv} \left(4 v^{2}\right)\right)}$$

Η παράγωγος μιας σταθεράς είναι $$$0$$$:

$${\color{red}\left(\frac{d}{dv} \left(1\right)\right)} - \frac{d}{dv} \left(4 v^{2}\right) = {\color{red}\left(0\right)} - \frac{d}{dv} \left(4 v^{2}\right)$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dv} \left(c f{\left(v \right)}\right) = c \frac{d}{dv} \left(f{\left(v \right)}\right)$$$ με $$$c = 4$$$ και $$$f{\left(v \right)} = v^{2}$$$:

$$- {\color{red}\left(\frac{d}{dv} \left(4 v^{2}\right)\right)} = - {\color{red}\left(4 \frac{d}{dv} \left(v^{2}\right)\right)}$$

Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{dv} \left(v^{n}\right) = n v^{n - 1}$$$ με $$$n = 2$$$:

$$- 4 {\color{red}\left(\frac{d}{dv} \left(v^{2}\right)\right)} = - 4 {\color{red}\left(2 v\right)}$$

Άρα, $$$\frac{d}{dv} \left(1 - 4 v^{2}\right) = - 8 v$$$.

Απάντηση

$$$\frac{d}{dv} \left(1 - 4 v^{2}\right) = - 8 v$$$A


Please try a new game Rotatly