Παράγωγος της $$$- \sqrt{3} x + \sqrt{2} x$$$
Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα
Η είσοδός σας
Βρείτε $$$\frac{d}{dx} \left(- \sqrt{3} x + \sqrt{2} x\right)$$$.
Λύση
Η παράγωγος του αθροίσματος/της διαφοράς είναι το άθροισμα/η διαφορά των παραγώγων:
$${\color{red}\left(\frac{d}{dx} \left(- \sqrt{3} x + \sqrt{2} x\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\sqrt{3} x\right) + \frac{d}{dx} \left(\sqrt{2} x\right)\right)}$$Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = \sqrt{3}$$$ και $$$f{\left(x \right)} = x$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(\sqrt{3} x\right)\right)} + \frac{d}{dx} \left(\sqrt{2} x\right) = - {\color{red}\left(\sqrt{3} \frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(\sqrt{2} x\right)$$Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \sqrt{3} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(\sqrt{2} x\right) = - \sqrt{3} {\color{red}\left(1\right)} + \frac{d}{dx} \left(\sqrt{2} x\right)$$Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = \sqrt{2}$$$ και $$$f{\left(x \right)} = x$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{2} x\right)\right)} - \sqrt{3} = {\color{red}\left(\sqrt{2} \frac{d}{dx} \left(x\right)\right)} - \sqrt{3}$$Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\sqrt{2} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} - \sqrt{3} = \sqrt{2} {\color{red}\left(1\right)} - \sqrt{3}$$Άρα, $$$\frac{d}{dx} \left(- \sqrt{3} x + \sqrt{2} x\right) = - \sqrt{3} + \sqrt{2}$$$.
Απάντηση
$$$\frac{d}{dx} \left(- \sqrt{3} x + \sqrt{2} x\right) = - \sqrt{3} + \sqrt{2}$$$A