Παράγωγος της $$$\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}$$$

Η αριθμομηχανή θα βρει την παράγωγο της συνάρτησης $$$\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}$$$, με εμφάνιση των βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right)$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = e^{- \frac{1}{10}}$$$ και $$$f{\left(x \right)} = x - 10 + e^{\frac{1}{10}}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x - 10 + e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}}\right)}$$

Η παράγωγος του αθροίσματος/της διαφοράς είναι το άθροισμα/η διαφορά των παραγώγων:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(x - 10 + e^{\frac{1}{10}}\right)\right)}}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(\frac{d}{dx} \left(x\right) - \frac{d}{dx} \left(10\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)\right)}}{e^{\frac{1}{10}}}$$

Η παράγωγος μιας σταθεράς είναι $$$0$$$:

$$\frac{- {\color{red}\left(\frac{d}{dx} \left(10\right)\right)} + \frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}} = \frac{- {\color{red}\left(0\right)} + \frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 1$$$, δηλαδή $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(1\right)} + \frac{d}{dx} \left(e^{\frac{1}{10}}\right)}{e^{\frac{1}{10}}}$$

Η παράγωγος μιας σταθεράς είναι $$$0$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(e^{\frac{1}{10}}\right)\right)} + 1}{e^{\frac{1}{10}}} = \frac{{\color{red}\left(0\right)} + 1}{e^{\frac{1}{10}}}$$

Άρα, $$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right) = e^{- \frac{1}{10}}$$$.

Απάντηση

$$$\frac{d}{dx} \left(\frac{x - 10 + e^{\frac{1}{10}}}{e^{\frac{1}{10}}}\right) = e^{- \frac{1}{10}}$$$A


Please try a new game Rotatly