Προσδιορίστε την κωνική τομή $$$7 x^{2} - 49 y^{2} = 343$$$
Σχετικοί υπολογιστές: Υπολογιστής παραβολής, Υπολογιστής Κύκλου, Υπολογιστής έλλειψης, Υπολογιστής υπερβολής
Η είσοδός σας
Αναγνωρίστε την κωνική τομή $$$7 x^{2} - 49 y^{2} = 343$$$ και βρείτε τις ιδιότητές της.
Λύση
Η γενική εξίσωση μιας κωνικής τομής είναι $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.
Στην περίπτωσή μας, $$$A = 7$$$, $$$B = 0$$$, $$$C = -49$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = -343$$$.
Η διακρίνουσα της κωνικής τομής είναι $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 470596$$$.
Στη συνέχεια, $$$B^{2} - 4 A C = 1372$$$.
Εφόσον $$$B^{2} - 4 A C \gt 0$$$, η εξίσωση παριστάνει υπερβολή.
Για να βρείτε τις ιδιότητές της, χρησιμοποιήστε τον υπολογιστή υπερβολής.
Απάντηση
$$$7 x^{2} - 49 y^{2} = 343$$$A παριστάνει μια υπερβολή.
Γενική μορφή: $$$7 x^{2} - 49 y^{2} - 343 = 0$$$A.
Γράφημα: δείτε το graphing calculator.