$$$\frac{1}{2}\cdot \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle$$$
Ihre Eingabe
Berechne $$$\frac{1}{2}\cdot \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle$$$.
Lösung
Multipliziere jede Komponente des Vektors mit dem Skalar:
$$${\color{BlueViolet}\left(\frac{1}{2}\right)}\cdot \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle = \left\langle {\color{BlueViolet}\left(\frac{1}{2}\right)}\cdot \left(2 \cos{\left(t \right)}\right), {\color{BlueViolet}\left(\frac{1}{2}\right)}\cdot \left(- 2 \sin{\left(t \right)}\right), {\color{BlueViolet}\left(\frac{1}{2}\right)}\cdot \left(0\right)\right\rangle = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 0\right\rangle$$$
Antwort
$$$\frac{1}{2}\cdot \left\langle 2 \cos{\left(t \right)}, - 2 \sin{\left(t \right)}, 0\right\rangle = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 0\right\rangle$$$A