Betrag von $$$\left\langle - \frac{\sqrt{5} \cos{\left(t \right)}}{5}, - \frac{\sqrt{5} \sin{\left(t \right)}}{5}, 0\right\rangle$$$
Ihre Eingabe
Bestimme den Betrag (die Länge) von $$$\mathbf{\vec{u}} = \left\langle - \frac{\sqrt{5} \cos{\left(t \right)}}{5}, - \frac{\sqrt{5} \sin{\left(t \right)}}{5}, 0\right\rangle$$$.
Lösung
Der Betrag eines Vektors wird durch die Formel $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$ gegeben.
Die Summe der Quadrate der Beträge der Koordinaten ist $$$\left|{- \frac{\sqrt{5} \cos{\left(t \right)}}{5}}\right|^{2} + \left|{- \frac{\sqrt{5} \sin{\left(t \right)}}{5}}\right|^{2} + \left|{0}\right|^{2} = \frac{\sin^{2}{\left(t \right)}}{5} + \frac{\cos^{2}{\left(t \right)}}{5}.$$$
Daher ist der Betrag des Vektors $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{\sin^{2}{\left(t \right)}}{5} + \frac{\cos^{2}{\left(t \right)}}{5}} = \frac{\sqrt{5}}{5}$$$.
Antwort
Der Betrag ist $$$\frac{\sqrt{5}}{5}\approx 0.447213595499958$$$A.