Nullraum von $$$\left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{6}\\- \frac{\sqrt{3}}{3} & 0 & \frac{\sqrt{6}}{3}\end{array}\right]$$$

Der Rechner ermittelt den Nullraum der $$$2$$$x$$$3$$$-Matrix $$$\left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{6}\\- \frac{\sqrt{3}}{3} & 0 & \frac{\sqrt{6}}{3}\end{array}\right]$$$, wobei die Schritte angezeigt werden.
$$$\times$$$
A

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Bestimmen Sie den Nullraum von $$$\left[\begin{array}{ccc}\frac{\sqrt{6}}{6} & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{6}\\- \frac{\sqrt{3}}{3} & 0 & \frac{\sqrt{6}}{3}\end{array}\right]$$$.

Lösung

Die reduzierte Zeilenstufenform der Matrix ist $$$\left[\begin{array}{ccc}1 & 0 & - \sqrt{2}\\0 & 1 & 1\end{array}\right]$$$ (für die Schritte siehe rref calculator).

Um den Nullraum zu bestimmen, lösen Sie die Matrixgleichung $$$\left[\begin{array}{ccc}1 & 0 & - \sqrt{2}\\0 & 1 & 1\end{array}\right]\left[\begin{array}{c}x_{1}\\x_{2}\\x_{3}\end{array}\right] = \left[\begin{array}{c}0\\0\end{array}\right].$$$

Wenn wir $$$x_{3} = t$$$ wählen, dann $$$x_{1} = \sqrt{2} t$$$, $$$x_{2} = - t$$$.

Somit gilt $$$\mathbf{\vec{x}} = \left[\begin{array}{c}\sqrt{2} t\\- t\\t\end{array}\right] = \left[\begin{array}{c}\sqrt{2}\\-1\\1\end{array}\right] t.$$$

Dies ist der Nullraum.

Die Nullität einer Matrix ist die Dimension einer Basis des Nullraums.

Somit beträgt die Nullität der Matrix $$$1$$$.

Antwort

Die Basis des Nullraums ist $$$\left\{\left[\begin{array}{c}\sqrt{2}\\-1\\1\end{array}\right]\right\}\approx \left\{\left[\begin{array}{c}1.414213562373095\\-1\\1\end{array}\right]\right\}.$$$A

Die Nullität der Matrix ist $$$1$$$A.


Please try a new game Rotatly