Wronski-Determinante von $$$x$$$, $$$\frac{1}{x^{5}}$$$

Der Rechner ermittelt die Wronski-Determinante der $$$2$$$ Funktionen $$$x$$$, $$$\frac{1}{x^{5}}$$$ und zeigt die Schritte an.
Komma-getrennt.

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Berechne die Wronski-Determinante von $$$\left\{f_{1} = x, f_{2} = \frac{1}{x^{5}}\right\}$$$.

Lösung

Die Wronski-Determinante ist durch die folgende Determinante gegeben: $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}f_{1}\left(x\right) & f_{2}\left(x\right)\\f_{1}^{\prime}\left(x\right) & f_{2}^{\prime}\left(x\right)\end{array}\right|.$$$

In unserem Fall gilt $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}x & \frac{1}{x^{5}}\\\left(x\right)^{\prime } & \left(\frac{1}{x^{5}}\right)^{\prime }\end{array}\right|.$$$

Bestimmen Sie die Ableitungen (für die Schritte siehe Ableitungsrechner): $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}x & \frac{1}{x^{5}}\\1 & - \frac{5}{x^{6}}\end{array}\right|$$$.

Bestimme die Determinante (für die Schritte siehe Determinantenrechner): $$$\left|\begin{array}{cc}x & \frac{1}{x^{5}}\\1 & - \frac{5}{x^{6}}\end{array}\right| = - \frac{6}{x^{5}}$$$.

Antwort

Die Wronski-Determinante ist gleich $$$- \frac{6}{x^{5}}$$$A.


Please try a new game Rotatly