Wronski-Determinante von $$$x$$$, $$$x^{5}$$$
Ihre Eingabe
Berechne die Wronski-Determinante von $$$\left\{f_{1} = x, f_{2} = x^{5}\right\}$$$.
Lösung
Die Wronski-Determinante ist durch die folgende Determinante gegeben: $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}f_{1}\left(x\right) & f_{2}\left(x\right)\\f_{1}^{\prime}\left(x\right) & f_{2}^{\prime}\left(x\right)\end{array}\right|.$$$
In unserem Fall gilt $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}x & x^{5}\\\left(x\right)^{\prime } & \left(x^{5}\right)^{\prime }\end{array}\right|.$$$
Bestimmen Sie die Ableitungen (für die Schritte siehe Ableitungsrechner): $$$W{\left(f_{1},f_{2} \right)}\left(x\right) = \left|\begin{array}{cc}x & x^{5}\\1 & 5 x^{4}\end{array}\right|$$$.
Bestimme die Determinante (für die Schritte siehe Determinantenrechner): $$$\left|\begin{array}{cc}x & x^{5}\\1 & 5 x^{4}\end{array}\right| = 4 x^{5}$$$.
Antwort
Die Wronski-Determinante ist gleich $$$4 x^{5}$$$A.