Rechner für Taylor- und Maclaurin-Reihen (Potenzreihen)
Bestimme die Taylor-/Maclaurin-Reihe Schritt für Schritt
Der Rechner ermittelt die Entwicklung in eine Taylorreihe (oder Potenzreihe) der gegebenen Funktion um den angegebenen Punkt und zeigt die Schritte an. Sie können die Ordnung des Taylor-Polynoms angeben. Wenn Sie das Maclaurin-Polynom möchten, setzen Sie den Entwicklungspunkt einfach auf $$$0$$$.
Solution
Your input: calculate the Taylor (Maclaurin) series of $$$\frac{1}{x}$$$ up to $$$n=5$$$
A Maclaurin series is given by $$$f\left(x\right)=\sum\limits_{k=0}^{\infty}\frac{f^{(k)}\left(a\right)}{k!}x^k$$$
In our case, $$$f\left(x\right) \approx P\left(x\right) = \sum\limits_{k=0}^{n}\frac{f^{(k)}\left(a\right)}{k!}x^k=\sum\limits_{k=0}^{5}\frac{f^{(k)}\left(a\right)}{k!}x^k$$$
So, what we need to do to get the desired polynomial is to calculate the derivatives, evaluate them at the given point, and plug the results into the given formula.
$$$f^{(0)}\left(x\right)=f\left(x\right)=\frac{1}{x}$$$
Evaluate the function at the point: as can be seen, the function does not exist at the given point.
Answer: the Taylor (Maclaurin) series can't be found at the given point.