Rechner zur Partialbruchzerlegung
Finde die Partialbruchzerlegung Schritt für Schritt
Dieser Online-Rechner bestimmt die Partialbruchzerlegung einer rationalen Funktion und zeigt dabei die Rechenschritte an.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{25 - x^{2}}$$$
Simplify the expression: $$$\frac{1}{25 - x^{2}}=\frac{-1}{x^{2} - 25}$$$
Factor the denominator: $$$\frac{-1}{x^{2} - 25}=\frac{-1}{\left(x - 5\right) \left(x + 5\right)}$$$
The form of the partial fraction decomposition is
$$\frac{-1}{\left(x - 5\right) \left(x + 5\right)}=\frac{A}{x - 5}+\frac{B}{x + 5}$$
Write the right-hand side as a single fraction:
$$\frac{-1}{\left(x - 5\right) \left(x + 5\right)}=\frac{\left(x - 5\right) B + \left(x + 5\right) A}{\left(x - 5\right) \left(x + 5\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$-1=\left(x - 5\right) B + \left(x + 5\right) A$$
Expand the right-hand side:
$$-1=x A + x B + 5 A - 5 B$$
Collect up the like terms:
$$-1=x \left(A + B\right) + 5 A - 5 B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 0\\5 A - 5 B = -1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=- \frac{1}{10}$$$, $$$B=\frac{1}{10}$$$
Therefore,
$$\frac{-1}{\left(x - 5\right) \left(x + 5\right)}=\frac{- \frac{1}{10}}{x - 5}+\frac{\frac{1}{10}}{x + 5}$$
Answer: $$$\frac{1}{25 - x^{2}}=\frac{- \frac{1}{10}}{x - 5}+\frac{\frac{1}{10}}{x + 5}$$$