Bestimme $$$\sqrt[4]{1}$$$

Dieser Rechner findet alle $$$n$$$-ten Wurzeln ($$$n = 4$$$) der komplexen Zahl $$$1$$$, mit Lösungsschritten.

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Bestimme $$$\sqrt[4]{1}$$$.

Lösung

Die Polarform von $$$1$$$ lautet $$$\cos{\left(0 \right)} + i \sin{\left(0 \right)}$$$ (für die Schritte siehe Polarform-Rechner).

Nach der Formel von de Moivre sind alle $$$n$$$-ten Wurzeln der komplexen Zahl $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ durch $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$ gegeben.

Es gilt, dass $$$r = 1$$$, $$$\theta = 0$$$ und $$$n = 4$$$.

  • $$$k = 0$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 0}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 0}{4} \right)}\right) = \cos{\left(0 \right)} + i \sin{\left(0 \right)} = 1$$$
  • $$$k = 1$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 1}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 1}{4} \right)}\right) = \cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)} = i$$$
  • $$$k = 2$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 2}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 2}{4} \right)}\right) = \cos{\left(\pi \right)} + i \sin{\left(\pi \right)} = -1$$$
  • $$$k = 3$$$: $$$\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 3}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 3}{4} \right)}\right) = \cos{\left(\frac{3 \pi}{2} \right)} + i \sin{\left(\frac{3 \pi}{2} \right)} = - i$$$

Antwort

$$$\sqrt[4]{1} = 1$$$A

$$$\sqrt[4]{1} = i$$$A

$$$\sqrt[4]{1} = -1$$$A

$$$\sqrt[4]{1} = - i$$$A


Please try a new game Rotatly