Komplexzahlenrechner
Operationen mit komplexen Zahlen Schritt für Schritt durchführen
Der Rechner versucht, jeden beliebigen komplexen Ausdruck zu vereinfachen, mit angezeigten Lösungsschritten. Er führt Addition, Subtraktion, Multiplikation, Division und Potenzieren durch und bestimmt außerdem die Polarform, das Konjugierte, den Betrag und den Kehrwert der komplexen Zahl.
Solution
Your input: simplify and calculate different forms of $$$i$$$
The expression is already simplified.
Polar form
For a complex number $$$a+bi$$$, polar form is given by $$$r(\cos(\theta)+i \sin(\theta))$$$, where $$$r=\sqrt{a^2+b^2}$$$ and $$$\theta=\operatorname{atan}\left(\frac{b}{a}\right)$$$
We have that $$$a=0$$$ and $$$b=1$$$
Thus, $$$r=\sqrt{\left(0\right)^2+\left(1\right)^2}=1$$$
Also, $$$\theta=\operatorname{atan}\left(\frac{1}{0}\right)=\frac{\pi}{2}$$$
Therefore, $$$i=\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$
Inverse
The inverse of $$$i$$$ is $$$\frac{1}{i}$$$
Multiply and divide by $$$i$$$ (keep in mind that $$$i^2=-1$$$):
$$${\color{red}{\left(\frac{1}{i}\right)}}={\color{red}{\left(- i\right)}}$$$
Hence, $$$\frac{1}{i}=- i$$$
Conjugate
The conjugate of $$$a + i b$$$ is $$$a - i b$$$: the conjugate of $$$i$$$ is $$$- i$$$
Modulus
The modulus of $$$a + i b$$$ is $$$\sqrt{a^{2} + b^{2}}$$$: the modulus of $$$i$$$ is $$$1$$$
Answer
$$$i=i=1.0 i$$$
The polar form of $$$i$$$ is $$$\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$
The inverse of $$$i$$$ is $$$\frac{1}{i}=- i=- 1.0 i$$$
The conjugate of $$$i$$$ is $$$- i=- 1.0 i$$$
The modulus of $$$i$$$ is $$$1$$$