Komplexzahlenrechner

Operationen mit komplexen Zahlen Schritt für Schritt durchführen

Der Rechner versucht, jeden beliebigen komplexen Ausdruck zu vereinfachen, mit angezeigten Lösungsschritten. Er führt Addition, Subtraktion, Multiplikation, Division und Potenzieren durch und bestimmt außerdem die Polarform, das Konjugierte, den Betrag und den Kehrwert der komplexen Zahl.

Enter an expression:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: simplify and calculate different forms of $$$i$$$

The expression is already simplified.

Polar form

For a complex number $$$a+bi$$$, polar form is given by $$$r(\cos(\theta)+i \sin(\theta))$$$, where $$$r=\sqrt{a^2+b^2}$$$ and $$$\theta=\operatorname{atan}\left(\frac{b}{a}\right)$$$

We have that $$$a=0$$$ and $$$b=1$$$

Thus, $$$r=\sqrt{\left(0\right)^2+\left(1\right)^2}=1$$$

Also, $$$\theta=\operatorname{atan}\left(\frac{1}{0}\right)=\frac{\pi}{2}$$$

Therefore, $$$i=\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$

Inverse

The inverse of $$$i$$$ is $$$\frac{1}{i}$$$

Multiply and divide by $$$i$$$ (keep in mind that $$$i^2=-1$$$):

$$${\color{red}{\left(\frac{1}{i}\right)}}={\color{red}{\left(- i\right)}}$$$

Hence, $$$\frac{1}{i}=- i$$$

Conjugate

The conjugate of $$$a + i b$$$ is $$$a - i b$$$: the conjugate of $$$i$$$ is $$$- i$$$

Modulus

The modulus of $$$a + i b$$$ is $$$\sqrt{a^{2} + b^{2}}$$$: the modulus of $$$i$$$ is $$$1$$$

Answer

$$$i=i=1.0 i$$$

The polar form of $$$i$$$ is $$$\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$

The inverse of $$$i$$$ is $$$\frac{1}{i}=- i=- 1.0 i$$$

The conjugate of $$$i$$$ is $$$- i=- 1.0 i$$$

The modulus of $$$i$$$ is $$$1$$$


Please try a new game Rotatly