Rechner zur Faktorisierung von Polynomen
Polynome Schritt für Schritt faktorisieren
Der Rechner versucht, jedes Polynom (Binom, Trinom, quadratisches Polynom usw.) zu faktorisieren, wobei die Schritte angezeigt werden. Es werden folgende Methoden verwendet: Ausklammern eines gemeinsamen Faktors, Faktorisieren quadratischer Polynome, Gruppieren und Umgruppieren, Quadrat einer Summe/Differenz, dritte Potenz einer Summe/Differenz, Differenz zweier Quadrate, Summe/Differenz dritter Potenzen, Satz über rationale Nullstellen. Der Rechner akzeptiert sowohl ein- als auch mehrvariable Polynome.
Solution
Your input: factor $$$3 r^{2} + 8 r + 5$$$.
To factor the quadratic function $$$3 r^{2} + 8 r + 5$$$, we should solve the corresponding quadratic equation $$$3 r^{2} + 8 r + 5=0$$$.
Indeed, if $$$r_1$$$ and $$$r_2$$$ are the roots of the quadratic equation $$$ar^2+br+c=0$$$, then $$$ar^2+br+c=a(r-r_1)(r-r_2)$$$.
Solve the quadratic equation $$$3 r^{2} + 8 r + 5=0$$$.
The roots are $$$r_{1} = -1$$$, $$$r_{2} = - \frac{5}{3}$$$ (use the quadratic equation calculator to see the steps).
Therefore, $$$3 r^{2} + 8 r + 5 = 3 \left(r + 1\right) \left(r + \frac{5}{3}\right)$$$.
$${\color{red}{\left(3 r^{2} + 8 r + 5\right)}} = {\color{red}{\left(3 \left(r + 1\right) \left(r + \frac{5}{3}\right)\right)}}$$
Simplify: $$$3 \left(r + 1\right) \left(r + \frac{5}{3}\right)=\left(r + 1\right) \left(3 r + 5\right)$$$.
Thus, $$$3 r^{2} + 8 r + 5=\left(r + 1\right) \left(3 r + 5\right)$$$.
Answer: $$$3 r^{2} + 8 r + 5=\left(r + 1\right) \left(3 r + 5\right)$$$.