Vector Projection Calculator
The calculator will find the vector projection of one vector onto another, with steps shown.
Related calculator: Scalar Projection Calculator
Your Input
Calculate the vector projection of $$$\mathbf{\vec{v}} = \left\langle -4, 2, 7\right\rangle$$$ onto $$$\mathbf{\vec{u}} = \left\langle 3, 1, 2\right\rangle$$$.
Solution
The vector projection is given by $$$\text{proj}_{\mathbf{\vec{u}}}\left(\mathbf{\vec{v}}\right) = \frac{\mathbf{\vec{v}}\cdot \mathbf{\vec{u}}}{\mathbf{\left\lvert\vec{u}\right\rvert}^{2}} \mathbf{\vec{u}}.$$$
$$$\mathbf{\vec{v}}\cdot \mathbf{\vec{u}} = 4$$$ (for steps, see dot product calculator).
$$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{14}$$$ (for steps, see vector magnitude calculator).
Thus, the vector projection is $$$\text{proj}_{\mathbf{\vec{u}}}\left(\mathbf{\vec{v}}\right) = \frac{4}{\left(\sqrt{14}\right)^{2}}\cdot \left\langle 3, 1, 2\right\rangle = \frac{2}{7}\cdot \left\langle 3, 1, 2\right\rangle = \left\langle \frac{6}{7}, \frac{2}{7}, \frac{4}{7}\right\rangle$$$ (for steps, see vector scalar multiplication calculator).
Answer
The vector projection is $$$\left\langle \frac{6}{7}, \frac{2}{7}, \frac{4}{7}\right\rangle\approx \left\langle 0.857142857142857, 0.285714285714286, 0.571428571428571\right\rangle.$$$A